ΔR is usually much smaller than Δy, a reasonable weighting scheme will be obtained by setting $w_{i}=$ $\left[1-\left(\lambda \zeta_{i}\right)^{2}\right]^{-3 / 2} . w_{i}$ increases rapidly if $\lambda \zeta_{i}$ is not small enough. Practically, however, the tilted axis method is more frequently used for $\lambda \zeta_{i} \gtrsim 0 \cdot 3$. Although general treatment for this case is complicated, a rough estimation may be given by considering the simplest case in which (1) the cylindrical film (radius R) is used with its axis normal to both the incident beam and fiber axis and (2) the fiber axis is tilted so that the meridional point of the layer line in question lies on the reflexion sphere. Starting from $\zeta=2 \sin \theta / \lambda, 2 \theta=y / R$, where y is the height of the reflexion (this should be on the meridian of the photograph) and neglecting ΔR again, we get

$$
w_{i}^{\prime}=\left[1-(\lambda \zeta / 2)^{2}\right]^{-1 / 2} .
$$

The variation of w_{i}^{\prime} is not appreciable within the range, $\zeta \lambda=0 \sim 1 \cdot 0$, which is practically important. Non-systematic factors such as the diffuseness of individual reflexions may be more important in deciding w_{i}^{\prime} s.

Extinction rules for a multistrand coiled coil

The fact that coiled coil structures are very likely to occur as a multistrand rope (Crick, 1953b) must be taken into account for assigning (p, q, s, m). Let us consider the simplest case in which each strand is related by a rotational symmetry only. Using the revised formula of Fraser, MacRae \& Miller (1964), it is easy to get the extinction rule that only the layer lines with $q-p-d=k N(k=0, \pm 1, \ldots)$ appear for the N strand coiled coil structure (Mitsui, 1968). If d is set to 0 as
in the previous section, we have $q-p=k N$. Similar considerations for the simple helix have already been made by Klug, Crick \& Wyckoff (1958).

The author wishes to express his sincere gratitude to Professor Y. Iitaka of the University of Tokyo, and Professor G. N. Ramachandran of the University of Madras for valuable discussions.

References

Brown, L. \& Trotter, I. G. (1956). Trans. Faraday. Soc. 52, 537.
Cochran, W., Crick, F. H. C. \& Vand, V. (1952). Acta Cryst. 5, 581.
Crick, F. H. C. (1953a). Acta Cryst. 6, 685.
Crick, F. H. C. (1953b). Acta Cryst. 6, 689.
Dickerson, R. E. (1964). The Proteins. Vol. II, p. 689. New York: Academic Press.
Elliott, A. \& Malcolm, B. R. (1958). Proc. Roy. Soc. A249, 30.
Fraser, R. D. B., MacRae, T. P. \& Miller, A. (1964). Acta Cryst. 17, 813.
Klug, A., Crick, F. H. C. \& Wyckoff, H. W. (1958). Acta Cryst. 11, 199.
Mitsui, Y. (1966). Acta Cryst. 20, 694.
Mitsun, Y. (1968). Protein Chemistry, 2nd edition. Tokyo: Kyoritsu-shuppan Inc. (in Japanese).
Mitsui, Y., Iitak.a, Y. \& Tsuboi, M. (1967). J. Mol. Biol. 24, 18.
Mitsui, Y. \& Poole, F. (1969). J. Mol. Biol. Submitted for publication.
Ramachandran, G. N. (1960). Proc. Indian Acad. Sci. A52, 240.

Application of the Symbolic Addition Procedure in Neutron Diffraction for Non-centrosymmetric Crystals

By S. K. Sikka
Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Bombay 85, India

(Received 30 December 1969)
For non-centrosymmetric crystals containing both positive and negative scatterers of neutrons, the symbolic addition procedure has been tested as a means of obtaining phases of neutron reflexions. Test calculations were done for two structures, α-resorcinol and methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$, which have already been studied by neutron diffraction using conventional methods. It is found that this procedure yields the phase angles with reasonable accuracy. The average error in phases for α-resorcinol was 14° and the F_{0} Fourier synthesis with these phases revealed the position of all the positive scatterers and three out of six hydrogen atoms. The average error in methyl GAG. $2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ was 40° and only 10 positively scattering atoms out of 16 could be clearly seen in the Fourier map. For both the structures an F_{o} map was found to be superior to an E map. When the contribution of the negative scatterers to the total neutron scattering is less than 25%, it has been shown that the symbolic addition method will apply for crystals containing up to 100 aioms per unit cell.

Introduction

In an earlier paper (Sikka, 1969) the author has shown that in centrosymmetric crystals, the application of the
symbolic addition procedure (Karle \& Karle, 1966) determines correctly the signs of about 95% of the neutron structure factors (with $\left|E_{\mathrm{h}}\right| \geq 1.5$) when the contribution of the negatively scattering atoms to the
total neutron scattering is less than 25%. In this paper, we report the application of this procedure for obtaining the phases of the neutron reflexions in noncentrosymmetric crystals. First we show that large values of normalized structure factors (E_{h}) of a structure are associated with large values of the normalized structure factors (V_{h}) for the corresponding squared structure, a condition which is necessary for the validity of the symbolic addition procedure and then we describe the application of this procedure for determining the phase angles for two structures already studied by neutron diffraction: α-resorcinol (Jude, 1969) and methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}^{*}$ (Hamilton \& La Placa, 1968). In the last section the limit on the maximum number of atoms in the unit cell for which this procedure can be applied is determined.

Relation between E_{h} and V_{h}

Both α-resorcinol and methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ belong to the space group Pna2 ${ }_{1}$. The values of σ, the mean relative contribution \dagger of the hydrogen atoms to the total mean neutron scattering in these two structures are 0.21 and 0.16 respectively. The values of $\left|V_{\mathrm{h}}\right|, \varphi_{0}$ the true phase angle for the normal structure, and φ_{V} the phase angle for V_{h} were computed from the published atomic parameters and the $\left|E_{\mathrm{b}}\right|$ was evaluated from the observed structure factors $\left|F_{\mathrm{b}}\right|$ using the expression

$$
\begin{equation*}
\left|E_{\mathrm{h}}\right|^{2}=\frac{\left|F_{\mathrm{h}}\right|^{2} \exp \left\{2 B \sin ^{2} \theta \mid \lambda^{2}\right\}}{\varepsilon \sum_{j=1}^{N} b_{j}^{2}} \tag{1}
\end{equation*}
$$

Here ε is a number which corrects certain reflexions for space group absences and B is the overall temperature factor. Tables 1 and 2 list some values of $\left|E_{\mathrm{n}}\right|$, $\left|V_{\mathrm{h}}\right|, \varphi_{0}$ and φ_{V} for α-resorcinol and methyl GAG.

* Methylglyoxal bisguanylhydrazine dihydrochloride monohydrate, $\mathrm{C}_{5} \mathrm{~N}_{8} \mathrm{H}_{12} .2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$.
$\dagger \sigma=\sum_{j=1}^{Q} b_{j}{ }^{2} / \sum_{j=1}^{N} b_{j}{ }^{2}$ where b_{j} is the neutron scattering factor
for the j th atom, Q is the number of hydrogen atoms and N is the total number of atoms in the unit cell.
$2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ respectively. It can be concluded from these that
(a) large $\left|E_{\mathrm{h}}\right|$ values are associated with large $\left|V_{\mathrm{h}}\right|$ values,
(b) the phases φ_{0} and φ_{V} agree well with each other. The average deviation $\langle | \varphi_{0}-\varphi_{V}| \rangle$ up to $\left|E_{\mathrm{h}}\right| \geq 1.3$ for α-resorcinol was 21° and for methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ it was 12° up to $\left|E_{\mathrm{h}}\right| \geq 1 \cdot 4$. In Fig. $1(a)$ and (b), we have plotted the average deviation $\langle | \varphi_{0}-\varphi_{V}| \rangle$ for different ranges of $\left|E_{\mathrm{h}}\right|$ values for the two structures. As expected, the deviation is higher for smaller $\left|E_{\mathrm{h}}\right|$'s but still reasonably low. It is relevant to mention here that Srinivasan (1961) has shown that a Fourier synthesis with the phases from one structure and amplitudes from another will reproduce the former, though with incorrect peak heights.

Applications

Test calculations were done for both α-resorcinol and methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ in order to determine the phases by the symbolic addition procedure. The procedure given by Karle \& Karle (1966) was followed. ' Σ_{2} ' listings were generated by a computer program and used to choose reflexions for fixing the origin in the space group $\mathrm{Pna2}_{1}$ in conjunction with the rules given by Hauptman \& Karle (1956). The values of phases of these chosen reflexions were taken to be the same as those given by the final structures.* For α-resorcinol, three more reflexions were given symbolic phases. These are listed in Table 3. Using the ' Σ_{2} listings and the relation

$$
\begin{equation*}
\varphi_{\mathrm{h}} \simeq \varphi_{\mathrm{k}}+\varphi_{\mathrm{h}-\mathbf{k}} \tag{2}
\end{equation*}
$$

the phases of 75 more reflexions in α-resorcinol were determined in terms of $0, \pi, a, b$, and c. It became apparent during the analysis that the symbol $a=0$ and $c=\pi$. For methyl GAG. $2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$, starting from three reflexions given in Table 3, the phases of another 49 reflexions were determined in terms of $0, \pi$ and

[^0]Table 1. Comparison of E_{h} and V_{h} for α-resorcinol
All $\left|E_{\mathrm{h}}\right| ' \mathrm{~s} \geq 2.0$.

h	k	l	\| $E_{\mathbf{h}} \mid$	$\left\|V_{h}\right\|$	φ_{0}	φ_{V}	h	k	l	$\left\|E_{h}\right\|$	$\left\|V_{\mathrm{h}}\right\|$	φ_{0}	φ_{V}
3	9	0	$3 \cdot 32$	3.03	0°	0°	9	1	2	$2 \cdot 22$	1.00	317°	$261{ }^{\circ}$
4	7	0	$3 \cdot 25$	$2 \cdot 51$	0	0	4	5	4	$2 \cdot 19$	1.89	273	292
6	6	0	$3 \cdot 10$	$3 \cdot 02$	0	0	5	3	4	$2 \cdot 18$	1.46	233	286
11	5	0	$2 \cdot 80$	$1 \cdot 40$	0	0	11	4	1	$2 \cdot 16$	1.78	190	212
9	2	2	$2 \cdot 62$	$1 \cdot 55$	174	171	5	3	4	$2 \cdot 15$	$1 \cdot 46$	369	353
6	2	6	$2 \cdot 58$	3-11	21	25	6	6	2	2.07	1.76	239	151
6	10	1	$2 \cdot 44$	1.93	315	298	6	5	1	2.06	$1 \cdot 85$	180	195
10	2	1	$2 \cdot 44$	$1 \cdot 51$	371	342	4	3	4	2.06	$1 \cdot 15$	150	106
9	3	1	$2 \cdot 34$	1.74	360	359	8	2	2	2.05	$1 \cdot 86$	252	240
8	4	1	$2 \cdot 26$	1.63	186	173	5	9	3	$2 \cdot 04$	1.81	204	184
10	2	0	$2 \cdot 26$	$1 \cdot 62$	180	180	1	4	4	2.02	1.62	75	97
4	6	3	$2 \cdot 24$	$1 \cdot 30$	69	79	4	7	2	$2 \cdot 01$	0.93	181	250

Table 2. Comparison of E_{h} and V_{h} for methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ All $\left|E_{\mathrm{h}}\right|$'s ≥ 2.0.

h	k	l	$\left\|E_{\mathrm{h}}\right\|$	$\left\|V_{h}\right\|$	φ_{0}	φ_{V}
2	2	6	4.06	$3 \cdot 96$	68°	70°
14	1	3	$3 \cdot 90$	$3 \cdot 69$	183	192
1	9	3	$3 \cdot 56$	$3 \cdot 58$	164	156
14	3	3	3.54	$3 \cdot 61$	349	342
7	5	5	$3 \cdot 41$	$3 \cdot 15$	296	288
12	4	3	$3 \cdot 22$	3.07	159	163
5	11	2	$2 \cdot 94$	$3 \cdot 54$	313	317
3	11	0	2.94	1.72	0	0
6	7	5	2.92	$4 \cdot 49$	6	7
5	8	2	$2 \cdot 89$	1.88	222	214
10	2	4	$2 \cdot 87$	$2 \cdot 95$	83	89
12	2	3	2.78	3.33	360	357
7	11	5	2.67	$2 \cdot 96$	142	134
3	8	4	$2 \cdot 63$	1.81	39	7
3	5	4	2.51	1.97	154	145
10	10	0	$2 \cdot 48$	$2 \cdot 17$	180	180
3	10	4	$2 \cdot 48$	3.07	226	231
10	5	4	2.45	$2 \cdot 28$	174	179
2	6	6	$2 \cdot 46$	$2 \cdot 11$	85	82
2	9	3	$2 \cdot 45$	2.56	224	223
1	7	3	$2 \cdot 44$	1.66	328	331
6	5	5	$2 \cdot 44$	$1 \cdot 19$	204	211
4	8	5	$2 \cdot 38$	$2 \cdot 33$	97	103
6	3	5	2.37	$2 \cdot 45$	344	350
2	4	4	2.35	1.74	81	86
8	3	2	2.32	$2 \cdot 21$	291	287
13	5	0	2.31	$2 \cdot 61$	180	180
14	5	3	2.31	2.04	191	184
	11	3	$2 \cdot 31$	3.01	320	338
13	3	0	$2 \cdot 30$	$2 \cdot 14$	0	0
4	1	1	$2 \cdot 28$	3.07	270	263
10	3	4	$2 \cdot 27$	$2 \cdot 13$	359	366
14	4	3	$2 \cdot 27$	2.22	279	286
11	7	0	$2 \cdot 26$	$1 \cdot 42$	180	180

$\pm \pi / 2$.* The next step for both the structures was the refinement of the phases already determined and determination of additional phases by the use of the tangent formula (Karle \& Hauptman, 1956),

$$
\begin{equation*}
\tan \varphi_{\mathbf{h}}=\frac{\sum_{k}\left|E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}\right| \sin \left(\varphi_{\mathbf{k}}+\varphi_{\mathbf{h}-\mathbf{k}}\right)}{\sum_{k}\left|E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}\right| \overline{\cos \left(\varphi_{\mathbf{k}}+\varphi_{\mathbf{h}-\mathbf{k}}\right)} .} \tag{3}
\end{equation*}
$$

This part of the calculations was programmed by the author for the CDC 3600 computer. In this program the rapid cycling procedure, in which the freshly determined phase is used for the determination of the subsequent phases (Weinzierl, Eisenberg \& Dickerson, 1969), was employed. If for given h, the number of interactions was less than 4 and also if normalized $\left|E_{\mathrm{h}}\right|_{c}$. \dagger was less than $0.4\left|E_{\mathrm{h}}\right|$, it was omitted from the basic deck of reflexions.
In α-resorcinol, the unknown symbol b was assigned values of $+\pi / 4,+\pi / 2$ and $+3 \pi / 4 \ddagger$ and each of the three sets of numerical phases was refined and an

[^1]| h | k | l | $E_{\text {h }}$ | $V_{\text {h }}$ | φ_{0} | φ_{V} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 4 | 4 | $2 \cdot 24$ | 1.34 | 275° | 265° |
| 5 | 10 | 2 | $2 \cdot 19$ | $2 \cdot 81$ | 323 | 316 |
| 2 | 5 | 6 | $2 \cdot 18$ | 2.45 | 192 | 186 |
| 2 | 4 | 6 | $2 \cdot 17$ | 1.53 | 243 | 236 |
| | 13 | 0 | $2 \cdot 17$ | 2.00 | 180 | 180 |
| | 4 | 4 | $2 \cdot 17$ | $2 \cdot 16$ | 12 | 17 |
| 13 | 9 | 0 | $2 \cdot 16$ | $1 \cdot 89$ | 180 | 180 |
| | 11 | 1 | $2 \cdot 16$ | 1.72 | 161 | 184 |
| 1 | 13 | 3 | $2 \cdot 16$ | $1 \cdot 67$ | 168 | 163 |
| 13 | 8 | 0 | $2 \cdot 15$ | $2 \cdot 92$ | 180 | 180 |
| 8 | 10 | 5 | $2 \cdot 15$ | 2.29 | 317 | 300 |
| 9 | 9 | 1 | $2 \cdot 13$ | $1 \cdot 94$ | 142 | 136 |
| 1 | 8 | 3 | $2 \cdot 13$ | 1.50 | 216 | 192 |
| 4 | 7 | 2 | $2 \cdot 13$ | $1 \cdot 97$ | 23 | 23 |
| 14 | 1 | 0 | $2 \cdot 12$ | 2.56 | 0 | 0 |
| 6 | 2 | 5 | $2 \cdot 11$ | $2 \cdot 57$ | 85 | 86 |
| 10 | 9 | 1 | 2.09 | 1.41 | 261 | 269 |
| 3 | 11 | 4 | 2.08 | $2 \cdot 23$ | 320 | 329 |
| 2 | 6 | 7 | 2.08 | 2.08 | 248 | 232 |
| 12 | 7 | 0 | 2.07 | $2 \cdot 22$ | 0 | 0 |
| 6 | 11 | 1 | 2.06 | $1 \cdot 34$ | 92 | 114 |
| 6 | 12 | 1 | 2.06 | 2.22 | 289 | 307 |
| 7 | 13 | 1 | 2.06 | 3.02 | 31 | 22 |
| 10 | 4 | 3 | 2.06 | $1 \cdot 46$ | 292 | 296 |
| 4 | 11 | 0 | 2.04 | 1.91 | 180 | 180 |
| 5 | 2 | 5 | 2.03 | $0 \cdot 88$ | 118 | 25 |
| 4 | 11 | 1 | 2.03 | $1 \cdot 23$ | 296 | 281 |
| | 11 | 1 | 2.03 | 1.01 | 64 | 40 |
| 7 | 7 | 5 | 2.02 | 1.99 | 112 | 106 |
| 6 | 4 | 5 | 2.02 | 1.23 | 265 | 263 |
| 3 | 8 | 3 | 2.02 | $1 \cdot 84$ | 323 | 316 |
| 2 | 0 | 1 | 2.01 | $1 \cdot 69$ | 227 | 203 |
| 1 | 1 | 5 | 2.00 | $0 \cdot 98$ | 201 | 206 |
| 1 | 1 | 5 | $2 \cdot 00$ | 0.98 | 201 | 206 |

Fig. 1. The average deviation $\langle | \varphi_{0}-\varphi_{V}| \rangle$ against E values (a) α-resorcinol (b) methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$.
additional 42 phases with $\left|E_{\mathrm{h}}\right| \geq 1 \cdot 3$ were determined using the tangent formula. At the end of last iteration for each set, a figure of merit

$$
C=\sum_{h} \alpha_{\mathrm{h}}
$$

was evaluated, where

$$
\begin{equation*}
\alpha_{\mathrm{h}}=\frac{2 \beta_{3}}{\beta_{2}^{3 / 2}}\left|E_{\mathrm{h}}\right|\left|E_{\mathrm{h}}\right|_{c} \tag{4}
\end{equation*}
$$

and

$$
\beta_{n}=\sum_{j=1}^{N} b_{j}^{n}
$$

Table 3. Phase assignments for fixing the origin and for implementing equation (2)

α-resorcinol					Methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$		
h	k	l	φ	h	k	l	φ
4	7	0	0°	13	6	0	0°
3	9	0	0	13	7	0	0
9	3	1	0	4	2	1	0
6	6	0	a				
1	4	4	b				
6	5	1	c				

It turned out that the set with $b=+\pi / 2$ had the highest value of C and the corresponding phases were found to be closest to the true phases. For methyl

Fig.2. Frequency distribution of the error $\left|\varphi_{J}-\varphi_{c}\right|(a) \alpha$-resorcinol (b) methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$.

GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ starting from the phases of 49 reflexions determined using equation (2), the phases of $127\left(\left|E_{\mathrm{h}}\right| \geq 1 \cdot 4\right)$ additional reflexions were calculated and refined with the use of the tangent formula.

At the end of the refinements in both the structures the phases determined by the tangent formula $\left(\varphi_{c}\right)$ and the true phase $\left(\varphi_{0}\right)$ were compared. Fig. $2(a)$ and (b) displays the frequency distributions of $\left|\varphi_{0}-\varphi_{c}\right|$. It can be readily seen that the agreement between φ_{0} and φ_{c} is excellent for α-resorcinol and satisfactory for methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$. For α-resorcinol none of the $h k 0$ reflexions (phase 0 or π) had the wrong phase but there were five such cases in methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$. The average values $\langle | \varphi_{0}-\varphi_{c}| \rangle,\langle | \varphi_{V}-\varphi_{c}| \rangle$ and $\langle | \varphi_{0}-$ $\varphi_{V}| \rangle$ for the two structures are compared in Table 4. It is interesting to note that $\langle | \varphi_{0}-\varphi_{c}| \rangle$ is less than $\langle | \varphi_{V}-\varphi_{c}| \rangle$ for the two cases. As the symbolic addition procedure has its basis in the similarity of the structure to the squared structure, one might have expected the reverse to be the case.*

Table 4. Comparison of $\langle | \varphi_{0}-\varphi_{c}| \rangle$ with $\langle | \varphi_{V}-\varphi_{c}| \rangle$ and $\langle | \varphi_{0}-\varphi_{V}| \rangle$

\[

\]

As the errors for methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$ are large, an E map was computed to see whether the structure could be obtained with these calculated phases. The map proved to be extremely complicated and could not be interpreted. Next an F_{o} Fourier map with these phases was calculated. This map contained peaks for all positive scatterers but out of 16 of them, 10 stood out above the spurious peaks. There was negative density at some of the hydrogen atoms positions but these could not have been located without use of chemical considerations. To make a comparison with α-resorcinol for which the phases are more accurately determined, both E and F_{o} maps were computed. Both the maps contained all the positive scatterers but in the F_{o} map there were additional sizable negative peaks corresponding to three out of the six hydrogen atoms in the asymmetric unit - thus again confirming that in neutron diffraction, an F_{o} map with the calculated phases will be more useful.

Maximum number of atoms in the unit cell

Having shown in Sikka (1969) and above that the symbolic addition procedure can be used to determine the phases of neutron reflexions, in this section we have determined the maximum number of atoms in the unit cell for which this procedure can be applied.

[^2]It is well known that during initial stages of the application of this procedure, only one combination of \mathbf{k} and $\mathbf{h}-\mathbf{k}$ may be available for a given reflexion \mathbf{h} and in order for a single term to indicate reliably the phase of a new reflexion, Karle \& Karle (1966), have recommended the use of probability formulae for centrosymmetric and non-centrosymmetric crystals. The probability formula for the centrosymmetric case, which gives the probability of the sign of E_{h} being the same as that of $E_{\mathbf{k}} E_{\mathrm{h}-\mathbf{k}}$ (using only one \mathbf{k}) is

$$
\begin{equation*}
P(\mathbf{h})=\frac{1}{2}+\frac{1}{2} \tanh \left(\beta_{3} \beta_{2}^{-3 / 2}\left|E_{\mathbf{h}} E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}\right|\right) . \tag{5}
\end{equation*}
$$

For non-centrosymmetric crystals a possible measure of the correctness of the phase determined using the relation (2), is given in terms of a measure of variance defined by equation (3.33) of Karle \& Karle (1966), which in turn depends upon the quantity α_{h} [see equation (4)] which for a single term is

$$
\begin{equation*}
\alpha_{\mathrm{h}}=\frac{2 \beta_{3}}{\beta_{2}^{3 / 2}}\left|E_{\mathrm{h}} E_{\mathrm{k}} E_{\mathrm{h}-\mathrm{k}}\right| . \tag{6}
\end{equation*}
$$

Karle \& Karle (1966) have set the limits as $P(\mathbf{h}) \simeq 0.97$ and variance $\simeq 0.5$ square radians (or $\alpha_{h}=3$) for the acceptance of any phase indication.

In order to determine the value of $N_{\text {max }}$, we will express $P(\mathbf{h})$ and α_{h} in terms of N for a $\mathrm{C}_{P} \mathrm{H}_{Q}$ molecule.* Using $b_{\mathrm{C}}=0.66$ and $b_{\mathrm{H}}=-0.374 \times 10^{-12} \mathrm{~cm}$,

$$
\begin{align*}
& \frac{\beta_{3}}{\beta_{2}^{3 / 2}}=\frac{0 \cdot 288 P-0 \cdot 052 Q}{(0.436 P+0 \cdot 14 Q)^{3 / 2}} \\
& \quad=\frac{(1+x)^{1 / 2}(0 \cdot 288 x-0.052)}{N^{1 / 2}(0.436 x+0.14)^{3 / 2}} \tag{7}
\end{align*}
$$

where $x=P / Q$. Setting $P(\mathbf{h})=0.97$ we can easily show from (5) and (7) that

$$
\begin{equation*}
N=\left[\frac{(1+x)(0.288 \mathrm{x}-0.052)^{2}}{3.3(0.436 x+0.14)^{3}}\right] \times\left|E_{\mathrm{h}} \mathrm{E}_{\mathrm{h}} E_{\mathrm{h}-\mathrm{k}}\right|^{2} \tag{8}
\end{equation*}
$$

The same expression can be derived for the noncentrosymmetric case from (6) by taking $\alpha_{h}=3 \cdot 5 . \dagger$ Now, in early stages one usually deals with three E 's the magnitude of whose product is about 20 (Germain

[^3]

Fig.3. The plot of N, the maximum number of atoms in the unit cell against $x(=P / Q)$.
\& Woolfson, 1968). Taking $\left|E_{\mathrm{h}} E_{\mathrm{k}} E_{\mathrm{h}-\mathrm{k}}\right|=20$ we have plotted N as a function of x (or σ) in Fig. 3. This shows that for each value of x, N reaches a maximum value above which the basic phase relations will introduce enough errors to make the initial steps in the symbolic addition procedure invalid. The value of $N_{\max }$ seems to be around 100. However, as Germain \& Woolfson (1968) have pointed out if one can tolerate one error in the first 10 steps or so this number goes up by a factor of almost 2 .

The author expresses his thanks to Dr R. Chidambaram for many useful suggestions. Thanks are also due to Mr R. Jude for communicating results on α-resorcinol prior to publication.

References

Germain, G. \& Woolfson, M. M. (1968). Acta Cryst. B24, 91.
Hamilton, W. C. \& La Placa, S. (1968). Acta Cryst. B24, 1147.

Hauptman, H. \& Karle, J. (1956). Acta Cryst. 9, 45.
Jude, R. (1969). Private communication.
Karle, J. \& Hauptman, H. (1956). Acta Cryst. 9, 635.
Karle, J. \& Karle, I. L. (1966). Acta Cryst. 21, 849.
Sikka, S. K. (1969). Acta Cryst. A25, 539.
Srinivasan, R. (1961). Proc. Ind. Acad. Sci. A 53, 252.
Weinzierl, J. E., Eisenberg, D. \& Dickerson, R. E. (1969). Acta Cryst. B25, 380.

[^0]: * As in Sikka (1969), this facilitates the comparison of the phases determined by this procedure with those from the final structures.

[^1]: * For those reflexions in methyl GAG. $2 \mathrm{HCl} . \mathrm{H}_{2} \mathrm{O}$, when equation (2) gives values 0 and π using different k and $h-k$ the average was taken.
 $\dagger\left|E_{\mathbf{h}}\right|_{c}=\left|\sum_{k}\right| E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}\left|\exp \left\{i\left(\varphi_{\mathbf{k}}+\varphi_{\mathbf{h}-\mathbf{k}}\right)\right\}\right|$.
 \ddagger The positive sign fixes the enantiomorph.

[^2]: * This observation was made by the referee.

[^3]: * From neutron scattering length considerations, we can approximately represent any crystal containıng positive and negative scatterers by the formula $C_{P} H_{Q}$ where P and Q are the number of carbon and hydrogen atoms respectively.
 \dagger For $\alpha_{h}=3 \cdot 5$, the variarice calculates to be 0.4 square radians which is close to the limit set by Karle \& Karle (1966).

